shaarli-client Documentation
Release 0.5.0

The Shaarli Community

Jul 26, 2022

User Documentation

Installation

1.1~ From the Python Package Index (PyPI)
1.2 Fromthesourcecode o o o i i i e e e e e e e e e
Configuration

2.1 Example e e e e e e e e e e
Usage

3.1 Gettinghelp oL e e e e e e
3.2 Exampleso e e e e e e e e e e
Change Log

4.1 v0.5.0-2022-07-26 o e e e e e
4.2 v0.4.1-2021-05-13 . . . o e e
43 v0.4.0-2020-01-09 e
4.4 v03.0-2019-02-23 . . . e e
4.5 v0.2.0-2017-04-09 . . . L e
4.6 vO0.1.0-2017-03-12 . . . o e e e e e e
Testing

5.1 Environment and reqUIr€mMentst e e e e e e e e e e e e e e e e e e
52 To0Is . .. e e
53 Runningthetests L e e e
Releasing

6.1 Environment and reqUIrementst e e e e e e e e e e e e e e e e
6.2 PyPland TestPyPlconfiguration
6.3 Releasing shaarli-client i it e e
GnuPG

7.1 Introduction e e e e e e e e e
7.2 Generatea GPGkey e

Indices and tables

N |

13
13
13
14
14
14
15

17
17
17
18

19
19
19
20

21
21
22

25

shaarli-client Documentation, Release 0.5.0

Command-line interface (CLI) to interact with a Shaarli instance.

User Documentation 1

https://github.com/shaarli/Shaarli

shaarli-client Documentation, Release 0.5.0

2 User Documentation

CHAPTER 1

Installation

shaarli-client is compatible with Python 3.4 and above and has been tested on Linux.

1.1 From the Python Package Index (PyPlI)

The preferred way of installing shaarli-client is within a Python virtualenv; you might want to use a wrapper

such as virtualenvwrapper or pew for convenience.

Here is an example using a Python 3.5 interpreter:

create a new 'shaarli' virtualenv
$ python3 -m venv ~/.virtualenvs/shaarli

activate the 'shaarli' virtualenv
$ source ~/.virtualenvs/shaarli/bin/activate

install shaarli-client
(shaarli) $ pip install shaarli-client

check which packages have been installed
$ pip freeze

PyJWT==1.4.2

requests==2.13.0

requests—-jwt==0.4

shaarli-client==0.1.0

1.2 From the source code

To get shaarli-client sources and install it in a new virtualenv:

https://www.python.org/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://github.com/berdario/pew
http://docs.python-guide.org/en/latest/dev/virtualenvs/

shaarli-client Documentation, Release 0.5.0

fetch the sources
$ git clone https://github.com/shaarli/python-shaarli-client
$ cd python-shaarli-client

create and activate a new 'shaarli' virtualenv
$ python3 -m venv ~/.virtualenvs/shaarli

$ source ~/.virtualenvs/shaarli/bin/activate

build and install shaarli-client
(shaarli) $ python setup.py install

check which packages have been installed

requests==2.13.0
requests—-jwt==0.4
shaarli-client==0.1.0

You can also use pip to install directly from the git repository:

$ python3 -m venv ~/.virtualenvs/shaarli

$ source ~/.virtualenvs/shaarli/bin/activate

(shaarli) $ pip3 install git+https://github.com/virtualtam/python-shaarli-
—client@master # or any other branch/tag

4 Chapter 1. Installation

CHAPTER 2

Configuration

shaarli-client loads information about Shaarli instances from a configuration file, located at:
e ~/.config/shaarli/client.ini (recommended)
e ~/.shaarli_client.ini
e shaarli_client.ini (in the current directory)
* user-specified location, using the —~c/--config flag
Several Shaarli instances can be configured:
[shaarli] the default instance

[shaarli:<my—-other—instance>] an additional instance that can be selected by passing the —1i flag: $
shaarli -i my-other-instance get-info

2.1 Example

[shaarli]
url = https://host.tld/shaarli
secret = s3kr37!

[shaarli:shaaplin]
url = https://shaarli.shaapl.in
secret = m0d3rn71m3s

[shaarli:dev]
url = http://localhost/shaarli
secret = asdfl234

shaarli-client Documentation, Release 0.5.0

6 Chapter 2. Configuration

CHAPTER 3

Usage

Once installed, shaarli-client provides the shaarli command, which allows to interact with a Shaarli in-
stance’s REST API.

3.1 Getting help

The —h and ——help flags allow to display help for any command or sub-command:

$ shaarli -h

usage: shaarli [-h] [-c CONFIG] [-1i INSTANCE] [-u URL] [-s SECRET]
[-f {Jjson,pprint,text}] [-o OUTFILE] [--insecure]
{get—-info,get-links,post-1link,put-1link, get-tags, get-tag,put-tag,delete-
—tag,delete-1link}

positional arguments:
{get—-info,get-1links,post-1link,put-1link, get-tags,get-tag,put-tag,delete-tag,delete-
—1link}
REST API endpoint

get—-info Get information about this instance

get—-links Get a collection of links ordered by creation date
post-link Create a new link or note

put-link Update an existing link or note

get-tags Get all tags

get-tag Get a single tag

put-tag Rename an existing tag

delete-tag Delete a tag from every link where it is used
delete-1link Delete a link

optional arguments:
-h, --help show this help message and exit
—-c CONFIG, --config CONFIG
Configuration file

(continues on next page)

shaarli-client Documentation, Release 0.5.0

(continued from previous page)

-1 INSTANCE, --instance INSTANCE
Shaarli instance (configuration alias)
-u URL, --url URL Shaarli instance URL
-s SECRET, —--secret SECRET
API secret
-f {json,pprint,text}, --format {json,pprint,text}
Output formatting
-o OUTFILE, --outfile OUTFILE
File to save the program output to
—-—-insecure Bypass API SSL/TLS certificate verification

$ shaarli get-links -h
usage: shaarli get-links [-h] [--limit LIMIT] [--offset OFFSET]
[-—searchtags SEARCHTAGS [SEARCHTAGS ...]]
[-—searchterm SEARCHTERM |[SEARCHTERM ...]]
[--visibility {all,private,public}]

optional arguments:

-h, —--help show this help message and exit
—-limit LIMIT Number of links to retrieve or 'all'
—-—offset OFFSET Offset from which to start listing links

—-—-searchtags SEARCHTAGS [SEARCHTAGS ...]

List of tags
—-—searchterm SEARCHTERM [SEARCHTERM ...]

Search terms across all links fields
--visibility {all,private,public}

Filter links by visibility

3.2 Examples

3.2.1 General syntax

’$ shaarli <global arguments> <endpoint> <endpoint arguments>

Note: The following examples assume a Configuration file is used

3.2.2 GET info

$ shaarli get-info

"global_ counter": 1502,
"private_counter": 5,
"settings": {
"default_private_ links": false,
"enabled plugins": [
"markdown",

(continues on next page)

8 Chapter 3. Usage

shaarli-client Documentation, Release 0.5.0

(continued from previous page)

"archiveorg"
1,
"header_link": "2",
"timezone": "Europe/Paris",
"title": "vay!"

3.2.3 GET links

$ shaarli get-links —--searchtags super hero
[
{
"created": "2015-02-22T15:14:41+00:00",
"description": "",
"id": 486,

"private": false,

"shorturl": null,

"tags": [
"wtf£",
"kitsch",
"super",
"hero",
"spider",
"man",
"parody"

] 14

"title": "Italian Spiderman",

"updated": "2017-03-10T19:53:34+01:00",
"url": "https://vimeo.com/42254051"

"created": "2014-06-14T09:13:36+00:00",

"description": "",
"id": 970,
"private": false,
"shorturl": null,
"tags": [
"super",
"hero",
"comics™",
"spider",
"man",
"costume",
"vintage"

i

"title": "Here's Every Costume Spider-Man Has Ever Worn",

"updated": "2017-03-10T19:53:34+01:00",

"url": "http://mashable.com/2014/05/01/spider-man—-costume"

3.2. Examples

shaarli-client Documentation, Release 0.5.0

3.2.4 POST link

$ shaarli post-link --url https://w3c.github.io/activitypub/

"created": "2018-06-04T20:35:12+00:00",
"description": "",

"id": 3252,

"private": false,

"shorturl": "kMkHHO",

"tags": [],

"title": "https://w3c.github.io/activitypub/",
"updated": "",

"url": "https://w3c.github.io/activitypub/"

3.2.5 PUT link

shaarli put-link --private 3252

"created": "2018-06-04T20:35:12+00:00",

"description": "",

"id": 3252,

"private": true,

"shorturl": "kMkHHQ",

"tags": [],

"title": "?kMkHHQ",

"updated": "2018-06-04T21:57:44+00:00",

"url": "http://aaron.localdomain/~virtualtam/shaarli/?kMkHHQ"

3.2.6 GET tags

$ shaarli get-tags —--limit 5

"name": "bananas",
"occurrences": 312

"name": "snakes",
"occurrences": 247

"name": "ladders",
"occurrences": 240

"name": "submarines",
"occurrences": 48

(continues on next page)

10

Chapter 3. Usage

shaarli-client Documentation, Release 0.5.0

(continued from previous page)

"name": "yellow",
"occurrences": 27

3.2.7 GET tag

$ shaarli get-tag bananas

"name": "bananas",
"occurrences": 312

3.2.8 PUT tag

$ shaarli put-tag wd4c —--name w3c

"name": "w3c",
"occurrences": 5

3.2.9 New lines/line breaks

If you need to include line breaks in your descriptions, use a literal newline \n and single quotes around the descrip-
tion:

$ shaarli post-link —--url https://example.com/ —--description 'One\nword\nper\nline'.

3.2.10 NOT (minus) operator

It is required to pass all values to —searchtags as a quoted string:

’$ shaarli get-links —--searchtags "video -idontwantthistag"

The value passed to —searchtags must not start with a dash, a workaround is to start the string with a space:

’$ shaarli get-links --searchtags " —-idontwantthistag -northisone"

3.2. Examples 11

shaarli-client Documentation, Release 0.5.0

12 Chapter 3. Usage

CHAPTER 4

Change Log

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

4.1 v0.5.0 - 2022-07-26

Added:

* Add delete-1ink command (delete a link by ID)
Changed:

» Update test tooling and documentation
Fixed:

* Fix ——insecure option for non-GET requests
Security:

» Update PyJWT to 2.4.0

4.2 v0.4.1 - 2021-05-13

Added:

* Add support for Python 3.7, 3.8 and 3.9
Changed:

* Bump project and test requirements

» Update test tooling and documentation

Removed:

13

http://keepachangelog.com/
http://semver.org/
https://pypi.org/project/PyJWT/

shaarli-client Documentation, Release 0.5.0

* Drop support for Python 3.4 and 3.5

Security:

* Rework JWT usage without the unmaintained requests-jwt library

4.3 v0.4.0 - 2020-01-09

Added:
e CLI:

— Add support for ——insecure option (bypass SSL certificate verification)

4.4 v0.3.0 - 2019-02-23

Added:
e CLL
— Add support for endpoint resource(s)
* REST API client:
— PUT api/v1l/links/<LINK_ID>
Fixed:
» Use requests-jwt < 0.5
* Fix POST /link endpoint name

4.5 v0.2.0 - 2017-04-09

Added:
* Add client parameter checks and error handling
¢ Read instance information from a configuration file
» REST API client:
— POST api/vl1l/links
Changed:
* CLL

rename ——output to ——format

default to ‘pprint’ output format

improve endpoint-specific parser argument generation

— improve exception handling and logging

14

Chapter 4. Change Log

shaarli-client Documentation, Release 0.5.0

4.6 v0.1.0 - 2017-03-12

Added:

* Python project structure

» Packaging metadata

* Code quality checking (lint)

* Test coverage

* Sphinx documentation:
— user - installation, usage
— developer - testing, releasing

* Makefile

* Tox configuration

¢ Travis CI configuration

* REST API client:
- GET /api/vl/info

— GET /api/vl/links

4.6. v0.1.0 - 2017-03-12 15

shaarli-client Documentation, Release 0.5.0

16 Chapter 4. Change Log

CHAPTER B

Testing

See also:

e Installation

5.1 Environment and requirements

Tox is used to manage test virtualenvs, and is the only tool needed to run static analysis and unitary tests, as it will
create the appropriate testing virtualenvs on-the-fly.

’(shaarli) $ pip install -r requirements/ci.txt ‘

Nevertheless, in case you want to install zest, development and documentation dependencies, e.g. for editor integration
or local debugging:

’ (shaarli) $ pip install -r requirements/dev.txt ‘

5.2 Tools

The documentation is written in reStructuredText, using the Sphinx generator.
Coding style is checked using tools provided by the Python Code Quality Authority:
* isort: check import ordering and formatting
* pycodestyle: Python syntax and coding style (see PEPS)
* pydocstyle: docstring formatting (see PEP257)
* pylint: syntax checking using predefined heuristics
Tests are run using the pytest test framework/harness, with the following plugins:

* pytest-pylint: pylint integration

17

http://tox.readthedocs.org/en/latest/
https://virtualenv.pypa.io/en/stable/
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/
http://meta.pycqa.org/en/latest/
https://github.com/timothycrosley/isort#readme
http://pycodestyle.pycqa.org/en/latest/
http://pep8.readthedocs.org
http://www.pydocstyle.org/en/latest/
http://pep257.readthedocs.org
http://www.pylint.org/
http://docs.pytest.org/en/latest/
https://github.com/carsongee/pytest-pylint
http://www.pylint.org/

shaarli-client Documentation, Release 0.5.0

* pytest-cov: coverage integration

5.3 Running the tests

To renew test virtualenvs, run all tests and generate the documentation:

’$ tox -r

To run specific tests without renewing the corresponding virtualenvs:

’$ tox —e py34 -e py36

To run specific tests and renew the corresponding virtualenv:

’$ tox -r py35

18

Chapter 5. Testing

https://pytest-cov.readthedocs.io/en/latest/
https://coverage.readthedocs.io/en/latest/

CHAPTER O

Releasing

Reference:
* Python Packaging User Guide
— Packaging and Distributing Projects

 TestPyPI Configuration

6.1 Environment and requirements

twine is used to register Python projects to PyPI and upload release artifacts:
e PKG-INFO: project description and metadata defined in setup.py
* sdist: source distribution tarball
* wheel: binary release that can be platform- and interpreter- dependent

Development libraries need to be installed to build the project and upload artifacts (see Testing):

’ (shaarli) $ pip install -r requirements/dev.txt

6.2 PyPIl and TestPyPI configuration

Danger: Once uploaded, artifacts cannot be overwritten. If something goes wrong while releasing artifacts, you
will need to bump the release version code and issue a new release.

It is safer to test the release process on TestPyPI first; it provides a sandbox to experiment with project registration
and upload.

19

https://packaging.python.org
https://packaging.python.org/distributing/
https://packaging.python.org/en/latest/guides/using-testpypi/
https://pypi.python.org/pypi/twine
https://pypi.org/
https://test.pypi.org/

shaarli-client Documentation, Release 0.5.0

6.2.1 ~/ .pypirc

[distutils]
index-servers=

pypi
testpypi

[pypil
repository = https://upload.pypi.org/legacy/
username = <PyPI username>

[testpypil

repository = https://test.pypi.org/legacy/
username = <TestPyPI username>

password = <TestPyPI password>

6.3 Releasing shaarli-client

6.3.1 Checklist

* install Python dependencies
* setup PyPI and TestPyPI:
— create an account on both servers
- edit ~/ .pypirc
— register the project on both servers
e get a GnuPG key to sign the artifacts
¢ double check project binaries and metadata
* tag the new release
* build and upload the release on TestPyPI
* build and upload the release on PyPI

Tip: A Makefile is provided for convenience, and allows to build, sign and upload artifacts on both PyPI and
TestPyPI.

6.3.2 TestPyPI

(shaarli) $ export IDENTITY=<GPG key ID>
(shaarli) $ make test_release

6.3.3 PyPI

(shaarli) $ export IDENTITY=<GPG key ID>
(shaarli) $ make release

20 Chapter 6. Releasing

https://pypi.org/
https://test.pypi.org/

CHAPTER /

GnuPG

7.1 Introduction

7.1.1 PGP and GPG

Gnu Privacy Guard (GnuPG) is an Open Source implementation of the Pretty Good Privacy (OpenPGP) specification.
Its main purposes are digital authentication, signature and encryption.

It is often used by the FLOSS community to verify:
» Linux package signatures: Debian Secure Apt, ArchLinux Master Keys

e SCM releases & maintainer identity

7.1.2 Trust

To quote Phil Pennock, the author of the SKS key server:

You MUST understand that presence of data in the keyserver (pools) in no way connotes trust. Anyone
can generate a key, with any name or email address, and upload it. All security and trust comes from
evaluating security at the “object level”, via PGP Web-Of-Trust signatures. This keyserver makes it
possible to retrieve keys, looking them up via various indices, but the collection of keys in this public pool
is KNOWN to contain malicious and fraudulent keys. It is the common expectation of server operators
that users understand this and use software which, like all known common OpenPGP implementations,
evaluates trust accordingly. This expectation is so common that it is not normally explicitly stated.

Trust can be gained by having your key signed by other people (and signing their keys back, too :-)), for instance
during key signing parties:

e The Keysigning Party HOWTO
e Web of Trust

21

https://gnupg.org/
https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://wiki.debian.org/SecureApt
https://www.archlinux.org/master-keys/
https://en.wikipedia.org/wiki/Revision_control
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
http://sks.spodhuis.org/
https://en.wikipedia.org/wiki/Key_signing_party
http://www.cryptnet.net/fdp/crypto/keysigning_party/en/keysigning_party.html
https://en.wikipedia.org/wiki/Web_of_trust

shaarli-client Documentation, Release 0.5.0

7.2 Generate a GPG key

* Generating a GPG key for Git tagging (StackOverflow)
¢ Generating a GPG key (GitHub)

7.2.1 gpg - provide identity information

$ gpg --gen-key

gpg (GnuPG) 2.1.6; Copyright (C) 2015 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Note: Use "gpg2 ——-full-gen-key" for a full featured key generation dialog.
GnuPG needs to construct a user ID to identify your key.

Real name: Marvin the Paranoid Android
Email address: marvin@h2g2.net
You selected this USER-ID:
"Marvin the Paranoid Android <marvin@h2g2.net>"

Change (N)ame, (E)mail, or (O)kay/(Q)uit? o

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

7.2.2 gpg - entropy interlude

At this point, you will:

* be prompted for a secure password to protect your key (the input method will depend on your Desktop Environ-
ment and configuration)

* be asked to use your machine’s input devices (mouse, keyboard, etc.) to generate random entropy; this step may
take some time

7.2.3 gpg - key creation confirmation

gpg: key A9D53A3E marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal (s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 wvalid: 2 signed: 0 trust: 0-, Og, On, Om, 0f, 2u
pub rsa2048/A9D53A3E 2015-07-31

Key fingerprint = AF2A 5381 E54B 2FD2 14C4 AS9A3 OE35 ACA4 A9D5S 3A3E
uid [ultimate] Marvin the Paranoid Android <marvin@h2g2.net>

sub rsa2048/8CO0EACF1 2015-07-31

22 Chapter 7. GnuPG

http://stackoverflow.com/a/16725717
https://help.github.com/articles/generating-a-gpg-key/

shaarli-client Documentation, Release 0.5.0

7.2.4 gpg - submit your public key to a PGP server

$ gpg —-keyserver pgp.mit.edu --send-keys A9D53A3E
gpg: sending key A9DS53A3E to hkp server pgp.mit.edu

7.2. Generate a GPG key 23

shaarli-client Documentation, Release 0.5.0

24 Chapter 7. GnuPG

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

25

	Installation
	From the Python Package Index (PyPI)
	From the source code

	Configuration
	Example

	Usage
	Getting help
	Examples

	Change Log
	v0.5.0 - 2022-07-26
	v0.4.1 - 2021-05-13
	v0.4.0 - 2020-01-09
	v0.3.0 - 2019-02-23
	v0.2.0 - 2017-04-09
	v0.1.0 - 2017-03-12

	Testing
	Environment and requirements
	Tools
	Running the tests

	Releasing
	Environment and requirements
	PyPI and TestPyPI configuration
	Releasing shaarli-client

	GnuPG
	Introduction
	Generate a GPG key

	Indices and tables

